Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей

0
27

Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей

В России стартовала реализация уникального проекта в области энергетики. В Томской области начато строительство опытно-демонстрационного энергоблока под названием БРЕСТ-300-ОД с реактором на быстрых нейтронах, использующим свинцовый теплоноситель. По факту нашу «страна-бензоколонка» приступила к созданию технологии замкнутого ядерного цикла. Как же такое стало возможным, и что это означает для отечественной и мировой энергетики?

При всем уважении к модной нынче «зеленой» энергетике, полностью заменить собой традиционную она не в состоянии. Последняя тоже не является панацеей, поскольку запасы ископаемого топлива для нее (угля, газа, нефти) являются исчерпаемыми. Хорошие перспективы имеются у ядерной энергетики с привычными реакторами на тепловых нейтронах, но для их работы также требуется редкий и дорогой уран U-235. Однако есть вариант с так называемым «замкнутым топливным циклом», где ставка делается на реакторы на быстрых нейтронах, которые могут перерабатывать природный U-238 и торий. Что же это за технология такая, и почему будущее именно за ней?

Во время работы обычного ядерного реактора тяжелое ядро урана, плутония или тория при делении выпускает несколько «лишних» нейтронов, что приводит к эффекту наведенной радиоактивности. В российских ВВЭР это ведет к накоплению в водяном носителе трития, тяжелого изотопа водорода. После этого его приходится выделять путем сложных и дорогостоящих манипуляций. Новый перспективный отечественный реактор БРЕСТ на быстрых нейтронах решает одновременно множество проблем.

ЧИТАТЬ ТАКЖЕ:  18+В эфир новостей попали интимные подробности телеведущей. Она совсем не подумала, что стол прозрачный и все прекрасно видно…

Во-первых, в качестве носителя используется не вода, а жидкий свинец, циркулирующий при температуре в 1751 °C. Большим преимуществом расплавленного металла является то, что он практически не поглощает нейтроны и не набирает наведенную радиоактивность. Как известно, свинец – это очень радиационно стойкий элемент. При этом он химически пассивен при контакте с воздухом или водой, поэтому исключены возможные взрывы при нештатной разгерметизации контура реактора. Это чрезвычайно важно для безопасности современной ядерной энергетики. Даже если реактор будет поврежден и рабочий носитель выйдет наружу, он просто медленно вытечет, охладится и застынет, сам собой закупорив повреждение во внешнем контуре. Никаких радиационных ужасов, вроде катастрофы на Чернобыльской АЭС, уже не будет.

Во-вторых, новый реактор сможет работать на водном паре, имеющем температуру до 600 °C. По сравнению с обычными ВВЭР, имеющими критическую отметку в 374 °C, это придаст дополнительный коэффициент полезного действия, который сможет достигнуть невероятных 40-45%. В перспективе КПД может вырасти еще больше, если вместо паровой турбины к реактору будет подключена газовая турбина с замкнутым циклом.